Atenção: Este material presupõe que o leitor tenha conhecimento intermediário de planilhas eletrônicas e do softrware Matlab. Apesar de desejável, não é necessário conhecimento em outras linguagem de programação.

1. Integração Numérica

A integração numérica envolve métodos numérico para o cálculo de integrais definidas. Para compreender adequadamente este conteúdo, é pré-requisito básico conhecer o conteido de uma integral, entender que a integral é a anti-derivada, saber diferenciar integrais definidas e indefinidas e conhececer as regrás básicas para encontrar funções primitivas F(x). Portanto o entendimento completo das definições a seguir é fundamental, e, caso a explicação resumida que fornecemos não seja necessáriadas fórmulas abaixo é necessário. Essas fórmular não serão explicadas aqui. Caso tenha dúvidas a respeito, volte e estude o conteúdo de Cálculo Integral.

Definições

Conforme citamos acima, iremos expor conceitos de forma resumida, caso alguma dúvida persista, na exite em gastar um tempo extra estudando conceitos de cálculo diferencial e integral.

A notação $F(x) = \int_{-\infty}^{\infty} f(x) dt$ é lida como "a integral de f(x) em x" e F(x) representa a função cuja derivada resulta em f(x). OU seja, F(x) é a primitiva de f(x).

A notação acima demonstra uma integral indefinida, ou seja, sem definição de intervalos. Abaixo temos a mesma notação desta vez definindo intervalos de a a b

$$\int_a^b f(x) dt$$

Graficamente, temos a integral definida acima como a área entre o eixo x e a função f(x) dentro dos intervalos a e b do eixo x.

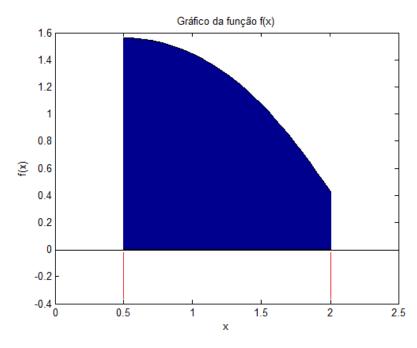


Figura 1 Área delimitada pelo 'eixo x' e pela função f(x) no intervalo a=0.5 e b=2.0.

```
x=0:0.05:2.5;

y = @(x) \cos(x).*(1/2*\exp(x/2))+1;

area(x,y(x));

title('Gráfico da função f(x)')

xlabel('x'); ylabel('f(x)'); %grid
```

Outra importante propriedade da integral é que as áreas abaixo do eixo x é negativa, e com valores negativos a área abaixo do eixo x anula a área de cima. Veja o caso abaixo:

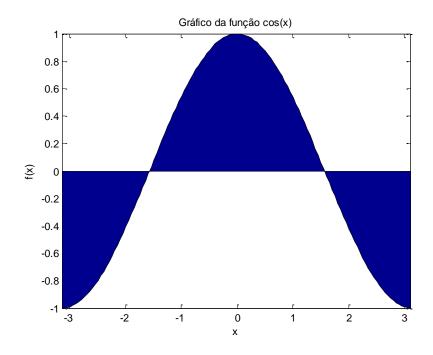


Figura 2 Função cos(x) entre -pi e pi é nula.

```
x=-pi:0.05:pi;
y = @(x) cos(x);
area(x,y(x));
title('Gráfico da função cos(x)')
xlabel('x'); ylabel('f(x)'); %grid
```

Quando a integral de f(x) pode ser expressa formalmente é possível calcular uma integral definida utilizando sua função primitiva, ou seja, a expressão formal da integral indefinida de f(x) em x.

$$S = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

O Teorema Fundamental do Cálculo garante que se $F(x) = \int_a^x f(t) \ dt$ então a função F é uma primitiva de f, pois F'(x) = f(x), precisamente aquela que se anula para x=a, uma vez que $F(a) = \int_a^a f(t) \ dt = 0.$

Regra dos trapézios

Entendo o teorema fundamental do cálculo e sabendo que a integral equivale a uma área, agora é possível entender o método que utiliza a área de vários trapézios somados para calcular a área/integral.

Usando essa técnica numérica, não é necessário encontrar a primitiva da função. Veja:

 $\Delta S = \Delta x \; \frac{f(x) + f(x + \Delta x)}{2} \; \text{será a área de cada pequena região dentro da área a ser calculada. Reparando bem, com o auxílio do gráfico é possível perceber que a fórmula nada mais é que o cálculo da área de um trapézio, daí o nome do método. Dessa forma a área que forma a integral pode ser expressa como:$

$$S = \int_a^b f(x) dx = \sum_{i=0}^N \Delta S_i = \sum_{i=0}^N \Delta x f\left(x_i + \frac{\Delta x}{2}\right) \text{ onde } a < x_i < b \text{ e } \Delta x = (b-a)/n$$

Exemplo de cálculo em planilha eletrônica

Abaixo, estraímos e adaptamos do livro Cálculo Numérico de Reinaldo Burian (BURIAN, 2011) o exemplo do cálculo da integral $\int_0^2 2 + 2x + x^2 dx$ com a escolha de 20 intervalos, ou seja, n=20 o que resulta em $\Delta x = (2-0)/20 = 0,1$.

Abaixo temos o cálculo realizado em planilha eletrônica. As fórmulas descritas funcional tanto no Microsoft Excel, como no LibreOffice Calc, bem como no Google Planilhas e estão a disposição no site <www.antonello.com.br/calculonumerico> na área destinada a este livro.

Integração Numérica: Regra dos trapézios								
f(x) =	2+2x-x ²							
0=	0,00	Intervalos=	20					
b=	2,00	$\Delta x =$	0,10					
D -	_,-,	<u> Д</u> , –	5,25					
n	x	$x + \frac{\Delta x}{2}$	$f\left(x+\frac{\Delta x}{2}\right)$	$\Delta x \ f\left(x + \frac{\Delta x}{2}\right)$				
0	0,00	0,05	2,09750	0,20975				
1	0,10	0,15	2,27750	0,22775				
2	0,20	0,25	2,43750	0,24375				
3	0,30	0,35	2,57750	0,25775				
4	0,40	0,45	2,69750	0,26975				
5	0,50	0,55	2,79750	0,27975				
6	0,60	0,65	2,87750	0,28775				
7	0,70	0,75	2,93750	0,29375				
8	0,80	0,85	2,97750	0,29775				
9	0,90	0,95	2,99750	0,29975				
10	1,00	1,05	2,99750	0,29975				
11	1,10	1,15	2,97750	0,29775				
12	1,20	1,25	2,93750	0,29375				
13	1,30	1,35	2,87750	0,28775				
14	1,40	1,45	2,79750	0,27975				
15	1,50	1,55	2,69750	0,26975				
16	1,60	1,65	2,57750	0,25775				
17	1,70	1,75	2,43750	0,24375				
18	1,80	1,85	2,27750	0,22775				
19	1,90	1,95	2,09750	0,20975				
20	2,00							
			Resultado:	5,33500				

Figura 3 Cálulo com n=20. As células em vermelho precisam ser alteradas a cada novo calculo. As células em verde possuem fórmulas fixas.

	Α	В	С	D	E			
1	Integração Numérica: Regra dos trapézios							
2								
3	,,,	2+2x-x ²						
4	0=	-	Intervalos=					
5	b=	2	Δ <i>x</i> =	=(B5-B4)/D4				
6								
_	n	x	$x + \frac{\Delta x}{2}$	$f\left(x+\frac{\Delta x}{2}\right)$	$\Delta x f\left(x + \frac{\Delta x}{2}\right)$			
7		D.4						
8	0	=B4	=B8+\$D\$5/2	=2+2*C8-(C8*C8)	=D8*\$D\$5			
9	1	=B8+\$D\$5	=B9+\$D\$5/2	=2+2*C9-(C9*C9)	=D9*\$D\$5			
10	2	=B9+\$D\$5	=B10+\$D\$5/2	=2+2*C10-(C10*C10)	=D10*\$D\$5			
11	3	=B10+\$D\$5	=B11+\$D\$5/2	=2+2*C11-(C11*C11)	=D11*\$D\$5			
12	4	=B11+\$D\$5	=B12+\$D\$5/2	=2+2*C12-(C12*C12)	=D12*\$D\$5			
13	5	=B12+\$D\$5	=B13+\$D\$5/2	=2+2*C13-(C13*C13)	=D13*\$D\$5			
14	6	=B13+\$D\$5	=B14+\$D\$5/2	=2+2*C14-(C14*C14)	=D14*\$D\$5			
15	7	=B14+\$D\$5	=B15+\$D\$5/2	=2+2*C15-(C15*C15)	=D15*\$D\$5			
16	8	=B15+\$D\$5	=B16+\$D\$5/2	=2+2*C16-(C16*C16)	=D16*\$D\$5			
17	9	=B16+\$D\$5	=B17+\$D\$5/2	=2+2*C17-(C17*C17)	=D17*\$D\$5			
18	10	=B17+\$D\$5	=B18+\$D\$5/2	=2+2*C18-(C18*C18)	=D18*\$D\$5			
19	11	=B18+\$D\$5	=B19+\$D\$5/2	=2+2*C19-(C19*C19)	=D19*\$D\$5			
20	12	=B19+\$D\$5	=B20+\$D\$5/2	=2+2*C20-(C20*C20)	=D20*\$D\$5			
21	13	=B20+\$D\$5	=B21+\$D\$5/2	=2+2*C21-(C21*C21)	=D21*\$D\$5			
22	14	=B21+\$D\$5	=B22+\$D\$5/2	=2+2*C22-(C22*C22)	=D22*\$D\$5			
23	15	=B22+\$D\$5	=B23+\$D\$5/2	=2+2*C23-(C23*C23)	=D23*\$D\$5			
24	16	=B23+\$D\$5	=B24+\$D\$5/2	=2+2*C24-(C24*C24)	=D24*\$D\$5			
25	17	=B24+\$D\$5	=B25+\$D\$5/2	=2+2*C25-(C25*C25)	=D25*\$D\$5			
26	18	=B25+\$D\$5	=B26+\$D\$5/2	=2+2*C26-(C26*C26)	=D26*\$D\$5			
27	19	=B26+\$D\$5	=B27+\$D\$5/2	=2+2*C27-(C27*C27)	=D27*\$D\$5			
28	20	=B27+\$D\$5						
29				Resultado:	=SOMA(E8:E28)			

Figura 4 Fórmulas explicitas. A célula d8 precisa ser alterada para calcular f(x), já as outras células da coluna a partir da D9 podem ser copiadas de D8.

Na tabela acima, verificamos que o cálculo se aproxima do resultado ideal que pode ser calculado analiticamente já que f(x) possui uma integral indefinida.

Neste caso a integral indefinida é:

$$\int 2 + 2x - x^2 dx = 2x + x^2 - \frac{x^3}{3}$$

O resultado do cálcula é igual a 16/3 = 5,33... com uma dízima periódica simples. Veja que com apenas n=20, ou seja, dividindo a área em 20 sub-áreas já conseguimos uma precisão interessante pois o método numérico chegou ao resultado 5,335 frente ao valor exato de 5,3333. Aumentando as divisões, ou seja, o valor de n (para 200 por exemplo) a precisão será ainda maior.

Em Matlab, podemos fazer rapidamente o cálculo analiticamente já que a integral é conhecida.

```
f = 0(x) -x.^2+2*x+2

syms x

I = double(int(f(x), 0, 2))
```

Que gera o resultado:

```
f = (0)(x) - x.^2 + 2 * x + 2
I = 5.3333
```

A partir da versão 2012a foi criada a função integral() que torna o código ainda mais simples:

```
f = @(x) -x.^2+2*x+2
integral(f(x), 0, 2)
```

Mas esta forma de resulução no Matlab nada tem a ver com o método dos trapézio, além disso, o código em Matlab acima não pode resolver funções cujas integrais não tem expressões formais, ou seja, não podem ser calculadas analiticamente. Conforme Burian (2011) a expressão

$$S = \int e^{-x^2} dx$$

não tem uma expressão formal para a integral de f(x). Apesar de que o Matlab consegue calculá-la com o código utilizado acima.

Utilizando o método dos trapézios com n=10 temos 0,182 como resultado, já para n = 20 a precisão aumenta para 0,183 e para n = 40 a precisão da terceira casa decimal permanece inalterada a 0,183.

Como exercício sugerimos implementar em planilha de cálculo a função acima utilizando n igual a 10, 20 e 40 para comparar os três resultados.

Método dos trapézios em Matlab

O algoritmo do método dos trapézios em Matlab utiliza a mesma lógica da planilha, pois é preciso informar a função, o intervalo (a e b), e o número de passos (n). Alternativamente é possível implementar um algoritmo onde não é informado o número de passos, mas sim o erro máximo desejado. Neste caso o algoritmo irá se encarregar de incrementar o valor de n sucessivamente até que o valor do erro seja tão pequeno quanto o necessário.

Será visto em sala.

2. Referências Biliográficas

BARROSO, L. C. Cálculo Numérico – Com Aplicações. Ed. Harbra.

BURIAN, Reinaldo: Lima, Antônio Carlos de. **Cálculo Numérico – Fundamentos de Informática.** Rio de Janeiro: Ed. LTC, 2011.

FRANCO, Neide B. Cálculo Numérico. São Paulo: Pearson Prentice Hall, 2006.

DAREZZO, Artur; Selma. **Cálculo Numérico – Aprendizagem com Apoio de Software.** Ed. Thomson.

Referencia bibliográfica complementar:

CHAPRA, Steven C. **Métodos Numéricos Aplicados com MATLAB para engenheiros e cientistas.** Ed. Bookman, 2013.

RUGGIERO, Márcia A. Gomes. **Cálculo Numérico: aspectos teóricos e computacionais.** São Paulo: Ed. MAKRON BOOKS, 1996.