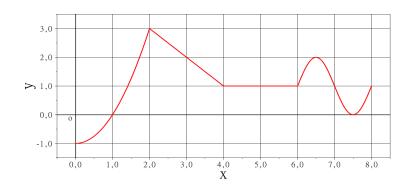
Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas - CCT Departamento de Matemática

Antônio João Fidélis


CÁLCULO DIFERENCIAL E INTEGRAL I (CDI-I) PROVA III 26/10/2012

É proibido o uso de telefone celular, smartphones, tablets (que devem permanecer desligados) ou calculadoras programáveis, assim como o empréstimo de materiais durante a prova. Só é permitido o uso de calculadora científica comum. Não é permitido ao aluno sair da sala antes da entrega desta prova. O desenvolvimento de todos os cálculos deve estar presente na prova.

Use o verso desta folha como rascunho. Responda ORGANIZADAMENTE na folha de respostas.

Nome: ______ Assinatura: _____

- 1) Calcule, por definição, a derivada das funções abaixo:
 - **a.** [1,0 ponto] $f(x) = \sqrt{3x+1} + 5x^2$.
 - **b.** [1,0 ponto] $g(x) = \cosh(x)$, em que $\cosh(x) = \frac{e^x + e^{-x}}{2}$.
- 2) Determine i) y'(x) e ii) a informação solicitada em cada item abaixo.
 - **a.** [1,0 ponto] $y(x) = \log_2(x) 3x^{\frac{-5}{2}} + 8 \cdot 16^{\frac{-3}{4}}$ e a equação da reta tangente ao ponto $P\left(4, \frac{19}{16}\right)$.
 - **b.** [1,0 ponto] $y(x) = \tan\left(\frac{2x^3}{3}\pi\right) \cot(x) = \frac{\sin(x)}{\cos(x)}$ e equação da reta normal ao ponto $Q(1, -\sqrt{3})$.
- 3) a. [1,0 ponto] Um móvel tem seu movimento descrito pela equação da posição em função do tempo dada por $y(t) = 3.0 + 20.0t 7.0t^2$.
 - i. Determine a equação da velocidade deste móvel para um instante t qualquer;
 - ii. Determine a aceleração deste móvel;
 - iii. Faça um esboço do gráfico de y(t) para t > 0.
 - b. [1,0 ponto] Faça um esboço do gráfico da derivada do gráfico abaixo.

- **4) a.** [1,0 ponto] Determine a expressão para y' em $xe^y \ln(y^2 + 1) = 4e^{3x^2y^5} + \frac{\sqrt{y}}{\cos(x^{\frac{5}{3}})}$.
- **b.** [1,0 ponto] Seja $h = f \circ g$ uma função diferenciável. Use a tabela abaixo para obter uma aproximação para h'(3,25), aproximando f'(x) e g'(x) pela inclinação da taxa de variação de f(x) e g(x).

	/	12,490	/		3,200	· /	· /
f(x)	-5,236	-//3//35/2 /	-5,382	g(x)	12,500	12,490	12,48

- 5) a. [1,0 ponto] Um cilindro circular reto, com o fundo e sem tampa, tem altura de 26,00 cm. Quando o raio mede 4,00 cm, qual deve ser o seu incremento para que a área total desse cilindro aumente $3,00\pi cm^2$?
- **b.** [1,0 ponto] Uma pessoa parte do ponto A em direção leste a 4,0 m/s. Dois minutos depois, outra pessoa parte de A em direção sul a 2,5 m/s. A que taxa está variando a distância entre elas 3,0 minutos após a partida da segunda pessoa?

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \quad \lim_{x \to 0} \left(\frac{a^x-1}{x}\right) = \ln(a) \quad \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) \approx \frac{\Delta y}{\Delta x} \quad y - y_0 = m(x-x_0) \quad \sin(\theta+\phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$$
num triângulo retângulo vale: $a^2 = b^2 + c^2$ $A_{\text{lateral do cilindro}} = 2\pi rh \quad A_{\text{círculo}} = \pi r^2$