FISICA GERAL III

Professor Antônio João Fidélis

PROVA II

21/05/2015

É proibido o uso de telefone celular, smartphones, tablets (que devem permanecer desligados durante a prova) ou calculadoras programáveis, ou empréstimo de materiais durante a prova. É permitido o uso de calculadora científica comum. Não é permitido sair da sala antes da entrega desta prova. O seu nome e desenvolvimento de todos os cálculos devem estar presentes na prova, na folha almaço. Ao final, entregue todo o material recebido durante a prova. Esta folha pode ser usada como rascunho.

Nome:	Assinatura:

- 1)[3,0 pts] Considere uma linha de cargas iniciada na origem, de comprimento L, com densidade linear de cargas dada por $\lambda(x) = \lambda_0 \left(\frac{x}{L}\right)^2$. a) Determine o potencial gerado por esta linha de cargas no ponto P a uma distância R da origem, colinear à linha, conforme a Figura 1. b) Determine a carga total da linha de cargas. c) Determine a distância da origem que uma carga puntiforme de valor igual ao calculado no item b) deva ser posicionada para que o potencial gerado no ponto P devido unicamente a esta carga seja o mesmo que o calculado no item a).
- 2) [2,0 pts] Um carregador portátil totalmente carregado tem uma carga de 1.400 mAh e sua tensão é de 5,0 V. a) Determine sua capacitância. b) Totalmente carregado e sem contato com fonte de força eletromotriz, um material de constante dielétrica $\kappa = 2,5$ é colocado entre as placas deste capacitor. A tensão ou a carga deste carregador se alteram? Justifique e determine-a(s) caso alguma se altere.
- 3) [2,0 pts] A densidade de corrente através de um condutor cilíndrico é dada por $J = J_0(1 r/R)$, com R o raio do condutor e r a distância ao eixo central. a) Faça um gráfico mostrando o comportamento da densidade de corrente, de r = 0 a r = 2R. b) Determine a corrente em termos de J_0 e da área $A = \pi r^2$.
- 4) [3,0 pts] Considere o circuito da Figura 2, com $\mathscr{E} = 200, 0\ V,\ R_1 = 5, 0\ \Omega,\ R_2 = 10, 0\ \Omega,\ R_3 = 50, 0\ \Omega$ e $C = 1200, 0\ \mu F$, com o capacitor inicialmente descarregado, sem corrente nos resistores e com as chaves S_1 e S_2 abertas. As chaves S_1 e S_2 são subitamente fechadas simultaneamente em t = 0. a) Determine a corrente em cada resistor para t = 0. b) A chave S_2 é aberta depois de um tempo muito longo. Faça um gráfico mostrando o comportamento da tensão no capacitor a partir do momento em que a chave S_2 é aberta. c) Com a chave S_2 fechada e o capacitor C descarregado, este carrega mais rapidamente com a chave S_1 aberta ou fechada? Justifique.

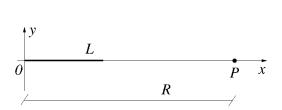


Figura 1: Questão 1.

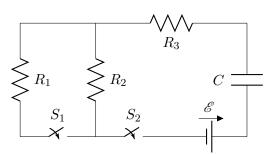


Figura 2: Questão 4.

			8			
$e = \pm 1,60 \cdot 10^{-1}$	$^{19}C k = 8$	$3,99 \cdot 10^9 N \cdot m^2/C^2$	$\epsilon_0 = 8,85 \cdot 10$	$O^{-12} C^2/N \cdot m^2$	q = ne	
$\Phi = \oint \vec{E} \cdot d\vec{A}$		$W_{if} = -\Delta U$	$\Delta V = \frac{-W_{if}}{q_0}$	$V = -\int_i^f ec{E} \cdot dar{s}$	<u>;</u>	
$V = \frac{q}{4\pi\epsilon_0 x}$	$V = \sum_{i=1}^{n} V_i$	$E_x = \frac{-\partial V}{\partial x}$	$U = \frac{q_1 q_2}{4\pi \epsilon_0 r}$	$q = CV$ C_{par}	$\epsilon_{\cdot \cdot} = \frac{\epsilon_0 A}{d}$	
$C_{eq.} = \sum_{j=1}^{n} C_j$	$\frac{1}{C_{eq.}} = \sum_{j=1}^{n} \frac{1}{2^{j}}$	$\frac{1}{C_j} \qquad U = \frac{q^2}{2C}$	$U = \frac{CV^2}{2}$	$q = \epsilon_0 \oint \kappa \vec{E} \cdot d\vec{A}$	$i = \frac{dq}{dt}$	
$i = \int \vec{J} \cdot d\vec{A}$		$ec{E} = ho ec{J}$ $R =$				
$\sum_{j=1}^{n} V_j = 0$	$\sum_{j=1}^{n} i_j = 0$	$R_{eq.} = \sum_{j=1}^{n} R_j$	$\frac{1}{R_{eq.}} = \sum_{j=1}^{n} \frac{1}{R_j}$	$q(t) = C\varepsilon \left(1 - \epsilon\right)$	$e^{-t/ au}$	